380,947 Registered Members
Welcome to the CNC-Arena Forum
Results 1 to 5 of 5
  1. #1
    Neuer Benutzer
    Join Date
    Jan 2013
    Location
    USA
    Posts
    21

    Parameter to view alarm codes on CRT

    Hello
    I have a Wasino WMC-3 Fanuc 0. Does anybody know what parameter to turn on to view alarms. Never a number just blank alarm screen with the LED lit up.... Any help would be greatly appreciated !!

  2. #2
    Registered
    Join Date
    Dec 2012
    Location
    The Netherlands
    Posts
    135
    Hi,

    Don't you have the function key ( OPR/ALARM ) and the soft key [ ALARM ] ???

    Regards,
    Heavy_Metal
    The Netherlands.

  3. #3
    Neuer Benutzer
    Join Date
    Jan 2013
    Location
    USA
    Posts
    21
    Hello
    Thanks for the response !! Yes I do have the function key ( OPR/ALARM ) but not a soft key... However I do get a soft key after I press the function key ?? When there is an alarm i press the Function key and it shows no alarm...

  4. #4
    Registered
    Join Date
    May 2013
    Location
    India
    Posts
    128
    Well , You can see the alarm as : by troubleshooting Method :
    Diagnostics

    Some other Diagnostics to check when you have problems are:
    M SERIES T SERIES
    G138.3 External Deceleration Signal X- G138.3 X-
    G138.0 External Deceleration Signal X+ G138.0 X+
    G138.4 External Deceleration Signal Y- G138.4 Z-
    G138.1 External Deceleration Signal Y+ G138.1 Z+
    G138.5 External Deceleration Signal Z-
    G138.2 External Deceleration Signal Z+

    MAN/ABS Signal G127.2

    M SERIES
    X016.5 Deceleration Signal for Reference Return X
    X017.5 Deceleration Signal for Reference Return Y
    X018.5 Deceleration Signal for Reference Return Z
    X019.5 Deceleration Signal for Reference Return 4

    T SERIES
    X016.5 Deceleration Signal for Reference Return X
    X017.5 Deceleration Signal for Reference Return Z
    X018.5 Deceleration Signal for Reference Return 3
    X019.5 Deceleration Signal for Reference Return 4

    F150.5 Manual Data Input Start Signal

    F149.7 CNC Ready Signal

    G115.0 Miscellaneous Function Completion Signal

    G120.0 External Program Input Start Signal M Series

    G117.0 External Program Input Start Signal T Series

    F188.0 Tool Change Signal

    M SERIES
    G105.0 Servo Off Signal X
    G105.1 Servo Off Signal Y
    G105.2 Servo Off Signal Z
    G105.3 Servo Off Signal 4

    T SERIES
    G105.0 Servo Off Signal X
    G105.1 Servo Off Signal Z
    G105.2 Servo Off Signal 3
    G105.3 Servo Off Signal 4

    F149.1 Reset Signal

    G120.4 Spindle Speed Reached Signal

    G120.5 Spindle Orientation Signal

    G120.6 Spindle Stop Signal

    F148.5 Automatic Operation Start Signal

    F148.4 Automatic Operation Halt Signal

    G103.7 Miscellaneous Function Lock Signal

    F178.7 Feed Hold Signal

    The following table is very useful:

    If the Edit Protect key is on you can input characters on the buffer line
    but they will not be inserted into the program.

    Following is the meaning of the Diagnostics 700 - 723.


    D700 7 6 5 4 3 2 1 0
    CSCT CITL COV2 CINF CDWL CMTN CFIN

    A 1 in the bit means the following:

    CSCT
    Control is waiting for the speed arrival signal of the spindle to turn on.

    CITL
    Interlock is turned on.

    COV2
    Override is 0%.

    CINF
    In-position check is done.

    CDWL
    Dwell is being executed.

    CMTN
    Move command is being executed in automatic operation mode.

    CFIN
    M,S,T functions are being executed.


    D701 7 6 5 4 3 2 1 0
    CRST CTRD CTPU

    A 1 in the bit means the following:

    CRST
    Emergency Stop, External Reset, or Reset Button on MDI panel is turned on.

    CTRD
    Data is being input via Reader/Punch Interface.

    CTPU
    Data is being output via Reader/Punch Interface.


    D712 7 6 5 4 3 2 1 0
    STP REST EMS RSTB CSU

    A 1 in the bit means the following:

    STP
    Stops pulse distribution. Is set for the following reasons.
    1.External reset button is turned on.
    2.Emergency stop button is turned on.
    3.Feed Hold button is turned on.
    4.Reset button on MDI panel is turned on.
    5.Manual mode (JOG,HANDLE,STEP) is selected.
    6.Other alarms exist.
    STP is useful for when Automatic operation won't execute.

    REST
    This flag is set when the External Reset, Emergency Stop, or Reset button is
    turned on.

    EMS
    This flag is set when the Emergency Stop button is turned on.

    RSTB
    This flag is set when the Reset button is turned on.

    CSU
    This flag is set when the Emergency Stop button is turned on or a Servo
    Alarm occurs. Check Diagnostics 800 - 803.

    D800 - SVERRX
    SVERRX

    D801 - SVERRZ
    SVERRY

    D802 - ------
    SVERRZ

    D803 - ------
    SVERR4

    D720 7 6 5 4 3 2 1 0
    OVL LV OVC HCAL HVAL DCAL FBAL OFAL

    A 1 in the bit means the following:

    OFAL
    An overflow alarm has occurred.

    FBAL
    A wire disconnection alarm has occurred.

    DCAL
    An alarm of regenerative discharge circuit has occurred.

    HVAL
    An over voltage alarm has occurred.

    OVC
    An excessive current alarm has occurred.

    LV
    An under voltage alarm has occurred.
    OVL
    An overload alarm has occurred. (Alarm 400 - 402 ) Power transistor heat sink or Discharge unit overheat or motor overload.

    400,402 = Overload Alarm OVL OH or thermostat of AC servo motor functions.

    Corresponding LEDs.

    ALARM LED
    DCAL DC
    HVAL HV
    HCAL HC
    LV LV
    OVL OH

    Diagnostic 720 is for the X Axis, 721 Y Axis, 722 Z Axis, 723 4th Axis.

    D27 7 6 5 4 3 2 1 0
    (T) PCS ZRNM ZRNL
    (M) PCS ZRN4 ZRNN ZRNM ZRNL

    A 1 in the bit means the following:

    ZRNL
    One rotation signal of pulse coder for L axis is on.

    ZRNM
    One rotation signal of pulse coder for M axis is on.

    ZRNN
    One rotation signal of pulse coder for N axis is on.

    ZRN4
    One rotation signal of pulse coder for 4th axis is on.

    PCS
    One rotation signal of pulse coder for spindle is on.

    This table is helpful for self diagnostics:

    DGN No. DISPLAY DATA

    000-022 Input signals from machine tool.
    (Output signal from receiver. No. 016-022 are effective without PMC.)

    027 One revolution signal from pulse coder and position coder.

    048-053 Output signals to machine tool.

    080-086 Output signals to machine tool. Output signals to driver.
    (These numbers cannot be used without PMC)

    100-147 Input signals from machine tool (PMC).
    (No. 116-122 are effective without PMC)

    148-199 Output signals to machine tool (PMC)
    (no. 148-153 are effective without PMC)

    200-249 Window data from PMC to CNC.

    250-299 Window data from CNC to PMC.

    700,701 Status of the CNC when it appears not to be working in automatic operation.

    712 Automatic operation stop and pause conditions.

    720-723 Alarm contents of servo system.

    800 Position Deviation amount of X axis.

    801 " " " " Y (M) Z (T)

    802 " " " " Z (M)

    803 " " " " 4th axis.

    820 X axis machine tool position from the reference point.

    821 Y (M) Z (T) axis machine tool position from the reference point.

    822 Z (M) axis machine tool position from the reference point.

    823 4th axis machine tool position from the reference point.


    Diagnostic 720 is for the first (usually X) axis, 721 is the second (Y for a mill, Z for a lathe) etc.

    720 Bit 6 = LV (Low Voltage at the Servo Amplifier)
    5 = OVC (Over current in the Servo Motor)
    4 = HC (Abnormal Current in the Servo Amplifier)
    3 = HV (Over Voltage at the Servo Amplifier)
    2 = DC (Regenerative Discharge at the Servo Amplifier)



    Also check the Servo Amp for and LED indication of the alarm.

    If you have one of these bits turned on but there is no LED indication on the amplifier, check the amps operating voltages.

    +20V +20V +/- 2V
    +24V +24V +/- 2V
    -15V -15V +/- .75V
    +15V +15V +/- .75V
    +5V +5V +/- .25V

    If any of the voltages are abnormal check the 220VAC supply.

    Another useful diagnostic:

    D820 Distance from Reference Point X axis (Detection Units)
    D821 Distance from Reference Point Z axis

    The Diagnostic or Keep Relay lists of some machines will show certain bits as UNUSED or NOT USED. Quite often this will indicate that those bits are Fanuc defined. They may have significance to the operation of the control as it relates to the operation of the machine. This becomes important if you load the PMC into the control and the bits get reset.


    You have to be very careful about changing Keep Relays and Diagnostics because of how machine builders use them throughout the ladder. Setting these wrong can cause some bizarre behavior. In the case of an Ecoca SJ-20 this can mean the turret will index fine at home (G28 U0 W0) but will hang up any where else. In this case, the hang up is not as simple as the turret not starting the index or a turret alarm being issued, it may cause the turret to overshoot in one direction or the other or both or undershoot in one direction or both or to undershoot on one tool but overshoot another, etc.

    Bit 7 of Diagnostic 760-767 does not indicate and alarm when a serial pulse coder is used it should be 1.

    Sometimes a machine with a Fanuc control will use data bits in the ladder to function as diagnostic bits or keep relays. These will be denoted with D (i.e. D0009.6). This is a G.DATA bit and works like a keep relay, in that, making its value equal 1 will normally have the effect of enabling something in the ladder, but just as with keep relays this is determined by the instruction which is associated with the data bit. An important point is that the G.DATA values are displayed as decimal numbers and normally you will be changing only one bit as previously mentioned D0009.6 so you will have to convert the bit that needs to be changed to a decimal number and enter it, if the current value of the address (D0009) is 0 or add the new value to the current value if it is something other than 0. For example, if you are trying to enable some function in the ladder (parts catcher, bar feeder, etc.) and the instruction that has the function disabled is D0009.6 and this instruction is an Examine On instruction (this is explained later) then you will need to change the value of D0009.6 from 0 to 1. The first thing you need to know is how to convert the bit information to decimal. When you look at the G.DATA table you will see:

    G.DATA

    NO. ADDRESS DATA
    0000 D0000 16
    0001 D0001 0
    0002 D0002 64

    etc... these are merely examples.

    Scroll down to the data address you need to change. A data value of 16 is equivalent to a binary value of 00010000. The bits are assigned decimal values based on their position in the eight bit binary number. The least significant bit (first from the right) is assigned a value of 1, the next bit from the right is assigned a value of 2, the third bit is assigned a value of 4 and so on until the most significant bit (first from the left) is assigned a value of 128.

    Decimal 128 64 32 16 8 4 2 1
    Binary 0 0 0 0 0 0 0 0

    So, using our example of D0009.6, if the current value of D0009 is equal to 0 you would change bit 6 to 1, bit six has been assigned a value of 64 so you would enter 64 as the value for D0009. If, however, the current value of D0009 was something other than 0, let’s say, 32 which tells us that D0009.5 equals 1 you would have to add to the two values together to avoid setting bit 5 to 0. So just add the 64 to the 32 and enter a decimal value of 96. The control interprets this and sets bits 5 and 6 to 1. Changing a bit from 1 to 0 is the same, just using subtraction instead of addition.

    Most of the Keep Relays used on a control are used by the machine builder but
    there are a few which are defined and used by Fanuc, they are K16, K17(K900),
    K18(K901) and K19(K902). These are reserved for use by the PMC control soft-
    ware and cannot be used for any other purpose.


    7 6 5 4 3 2 1 0
    K16 MWRTF2 MWRTF1


    Servos


    If you have an axis problem you can insert a dummy plug into the Servo Amp axis plug to loop back the signals to differentiate between a true axis problem and an amplifier problem.


    For excessive axis noise and vibration adjust the Servo Tuning Parameters. The Proportional Gain parameter is the most effective but normally requires a large change in value to produce a noticeable result. Adjusting the Filter Parameter can help sometimes. Adjusting either too far will cause the Excessive Servo Error alarm.

    To access the Servo Tuning parameters:
    1. SYSTEM
    2. DGNOS
    3. Right Chapter button.....


    If the displayed position does not match the actual movement, check the Servo Parameter Page. In particular check the Feed gear and Ref. Counter values.

    If the Feed gear number is set too low, the machine will display a position greater than the actual movement. If the number is too high, the machine will display a position less than the actual movement.

    Check terminals of dual servo amplifier are:
    0V 0 volts
    5V Control Power +5V (+5 +/- 0.25)
    IRL R Phase motor current of L axis
    ISL S Phase motor current of L axis
    IRM R Phase motor current of M axis
    ISM S Phase motor current of M axis

    When tuning a servo, increase the gains one at a time. Increase until the motor starts to vibrate while at rest then decrease the value by 20%.

    When working with an older Servo Amplifier(Velocity Control Unit), there are three adjustments to be aware of. These are potentiometers RV1, RV2 and RV3. In the event of an amplifier which drives more than one motor these will be arranged RV1-RV3 from top to bottom and X to Z from left to right. Adjustment of these is almost always necessary after replacing an amplifier with a new one or even when putting a repaired one back in to service. In this case, also be aware of the jumpers or shorting pins on the drive which may be different as well. It’s a good idea to record these settings before sending the unit to Fanuc. RV1 is the Gain adjustment. The most obvious symptom of a need for adjustment of this one is rough or jerky movement of the motor. RV2 adjusts the position deviation amount while the axis is at rest. Ideally, this should be zero and is easily attainable with this adjustment. The exception is for a gravity axis such as the X axis on a turning center. The deviation will normally move between 1 and 2 due to the effects of gravity. The deviation amount can be monitored by diagnostic function. In the case of a zero control on a lathe this is Diagnostic 800 for the X axis and 801 for the Z axis. Once this is adjusted for zero or very close to it, the deviation amount in each direction will be the same value. This adjustment is critical to operation of the machine because if the position deviation amount is too great, the machine will not operate as it should. Programs will not execute in MDI or AUTO. The spindle will not run, etc. The determining factor in this is the value set it Parameter 500 for X, 501 for Z. This parameter is the In Position Width. The control compares the value of this parameter to the value in Diagnostic 800, 801, etc. If the value in the diagnostic exceeds the value set in the parameter bit 3 of Diagnostic 700 is set to 1. Diagnostic 700.3 is the IN-POSITION CHECK (CINP). If this bit is set to 1, automatic operation will not execute. Another thing you will find is that commands whether given in Auto or MDI will not be performed. For example, if you command M3 in MDI mode, press Cycle Start, the Cycle Start lamp will turn on, BUF will be displayed on the CRT showing that the command was read into the memory buffer but will not be acted upon. The same is true for a tool (T) command or speed (S) command. In addition, the spindle will not start. A more or less typical value for the In-Position Width is 20. This is in Detection Units. RV3 adjusts the deviation amount while the axis is in motion. The difference between actual position and commanded position while in motion is known as LAG and is relative to feedrate. As the feedrate increases so too does the lag. Sometimes the lag can become excessive and cause servo problem. To adjust the lag, move the axis while watching Diagnostic 800, 801, etc. Rotate RV3 clockwise to decrease the amount of deviation.

    Newer Fanuc motors always come with a pulse coder but there was a time when they could be bought without one. Typically this is true for controls Series 6 and older. The number on the nameplate indicates if a pulse coder is supplied or not. The part of the number that determines this is the last two digits. If the last two are either 05 or 25, no pulse coder is supplied. There may be other numbers which fit this description but motors with these two numbers never have pulse coders. It is hard to determine by physical appearance if a pulse coder is supplied because the motors use the same end cap and cable connector for the tacho-generator so a motor with a tach will look the same from the outside as one with a pulse coder.

    If you replace the motor or pulse coder on a Fanuc servo motor you must perform a grid shift for the axis unless you can put the pulse coder back in the same location radially relative to the axis position. This is very hard to do in some cases because of the coupling device not being keyed, etc. This is normally a problem only when the entire motor is replaced. Generally speaking, the pulse coders have a slot across the face of the shaft which matches a slot in the shaft of the motor by way of a driver that goes between them. In this case, as long as the the motor's position is not change between the time that the pulse coder is removed and replaced then there are only two possibilities. Either the axis position will be correct or the pulse coder will be out by 180 degrees which will result in an error of half a revolution of the ball screw. Sometimes the error can go unnoticed if the machine operator goes ahead and re-touches the tools on that axis without checking actual position first and if they are not using all of the travel on the axis.

    Servo parameter settings are determined by the Motor I.D. number. This is a two digit number which is defined by parameter. In the case of a 0 control, it is set in parameter 8120 for the X axis, 8220 for Y, 8320 for Z, etc. To determine the correct setting for a motor, look at the table in the Maintenance Manual.

    The Motor ID number for the A06B-145-B077 is 10, A06B-146-B077 is 27 and A06B-147-B077 is 20.

    The pins of the motor connector for the Alpha series are:

    A - U
    B - V
    C - W
    D - Ground

    When looking at the connector (motor) face on, the pin to the right of the notch is pin A, below it is pin B, to it's left is pin C, above it is pin D.

    The resistance from any of the windings of a Fanuc motor to it's frame should be 100 megohms or higher. A reading of 10 to 100 megohms indicates that the winding has begun to deteriorate but operation should be, for the most part, normal. A reading of 1 to 10 megohms indicates considerable deterioration but the motor will still run although likely abnormally. A reading of less than 1 megohm cannot be tolerated, the motor must be replaced.

    An important thing to know about Fanuc servo motors is that unlike a normal AC motor, they use permanent magnets. This gives them exceptional positioning ability and controllability but they do have a down side, in that, the magnets can become demagnetized or the poles may become scrambled. When this happens the motor will exhibit one or more of the following symptoms:

    1. Cogging (when the motor is rotated by hand you feel notches similar to the way a DC motor feels).
    2. Motor pulls high current even under little or no load.
    3. Motor has no torque (in extreme cases it can be stalled by holding the shaft with your hand.
    4. Motor rotation feels rough or jerky.

    A common cause for this condition is if the motor gets too hot. Also, a servo amplifier can fail in such a way as to cause this problem. In either case, magnets can be re-magnetized by a either Fanuc or a company in Chicago called Endeavour Technologies.

    Another thing to know about these motors is that they are like a DC motor in that if one of the windings is shorted internally or if two of the output phases of the amplifier are shorted together the cogging effect will be present. In this case the motor will normally be harder to turn than it is when the poles are demagnetized or are scrambled.

    The following pin outs are typically of a Fanuc Alpha I64 pulse coder:

    Honda Connector Cannon Plug
    (M185, M188, etc.)

    1 --------------------------------- N
    2 --------------------------------- T
    4 --------------------------------- J
    5 --------------------------------- K
    6 --------------------------------- H
    14 ------------------------------- F
    15 ------------------------------- G
    16 ------------------------------- A
    17 ------------------------------- D
    20 ------------------------------- H

    You will notice that both pin 6 and pin 20 of the Honda connector are connected to pin H of the Cannon (military style) plug. Typically what you will find is that pin H has no connection to the pulse coder. Pin H is used as a tie point for the two wires. This is preferable to connecting a jumper between the two pins at the Honda connector.

    The magnets used in Fanuc Alpha series motors are Neodymium Ferrite.

    When trying to determine the compatibility of motors:

    A06B-XXXX-XXXX

    A06B identifies it as an Alpha motor.

    The next two numbers identify the range of models.
    03 - a1/3000
    a2/2000
    a2/3000
    a65/2000
    a100/2000
    a150/2000
    01 - a3/3000
    a6/2000
    a6/3000
    a12/2000
    a12/3000
    a22/1500
    a22/2000
    a22/3000
    a30/2000
    a30/3000
    a40/2000
    a40/2000 (with fan)
    013 a300/2000
    a400/2000

    Of these the most common found on YCI, Takumi, etc. is the a22.

    The next two numbers define the specific model.
    71 - a1/3000
    72 - a2/2000
    73 - a2/3000
    23 - a3/3000
    27 - a6/2000
    28 - a6/3000
    42 - a12/2000
    43 - a12/3000
    46 - a22/1500
    47 - a22/2000
    48 - a22/3000
    51 - a30/1200
    52 - a30/2000
    53 - a30/3000
    57 - a40/2000
    58 - a40/2000 (with fan)
    31 - a65/2000
    32 - a100/2000
    33 - a150/2000
    7 - a300/2000
    8 - a400/2000

    The first number after the B indicates the type of output shaft.
    0 - Taper Shaft
    1 - Taper Shaft with brake
    5 - Straight Shaft
    6 - Straight Shaft with brake

    The taper shaft is considered the standard configuration.

    On models a1 and a2 the brake is 2 Nm.
    On models a3 and a6 the brake is 8 Nm.
    On models a12, a22, a30 and a40 the brake is 35 Nm.
    On models a65, a100 and a150 the brake is 100 Nm.

    The next two numbers indicate the type of pulse coder supplied with the motor

    75 - Pulse Coder aA64
    77 - Pulse Coder aI64
    88 - Pulse coder aA1000

    please upload your machine Parameters , So I can suggest you something .
    regards

    - - - Updated - - -

  5. #5
    Neuer Benutzer
    Join Date
    Jan 2013
    Location
    USA
    Posts
    21
    That is some great info, thanks !!! I'm gonna pull them off of the programming computer now so you can see what I have.
    Thanks again !!

Similar Threads

  1. View parameter#5131 & 5132 - Fanuc 21i-T
    By camgal_59 in forum Fanuc
    Replies: 4
    Last Post: 06-07-2012, 01:03 PM
  2. Alarm Codes
    By johngitts in forum Colchester Tornado lathes
    Replies: 1
    Last Post: 02-12-2011, 12:03 AM
  3. problem tx8f control parameter codes?
    By ironofeden in forum General MetalWorking Machines
    Replies: 0
    Last Post: 09-11-2010, 11:12 AM
  4. Work coordinate additional G codes parameter
    By djmcdaris in forum Fanuc
    Replies: 2
    Last Post: 02-27-2008, 10:41 PM
  5. 18i hidden parameter view/change?
    By john k in forum Fanuc
    Replies: 6
    Last Post: 12-22-2006, 07:58 AM

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •  
Advertising